
MATHEMATICS OF COMPUTATION
VOLUME 46, NUMBER 174
APRIL 1986, PAGES 603-608

Effect of Improved Multiplication Efficiency
on Exponentiation Algorithms Derived

from Addition Chains

By D. P. McCarthy

Abstract. The interaction between the efficiency of the basic multiplication algorithm and the
addition chain used to compute x' is studied. We conclude that either repeated multiplication
by x or repeated squaring should be used and the provenance of each technique is established.

1. Introduction. Algorithms to evaluate x" where n is a positive integer and x an
object for which multiplication is defined have been designed and analyzed by a
number of authors, see Fateman [1] and [2], Gentleman [3], Graham [4], Heindel [5],
Horowitz [6], Knuth [7] and McCarthy [8]. These algorithms have included binomial
or multinomial expansions, fast Fourier transforms, evaluation homomorphisms,
repeated multiplication or squaring and multiplication sequences based on addition
chains for n.

Of these algorithms, those based upon the addition chain for n, including the
repeated multiplication and squaring algorithms, are distinguished by their simplic-
ity. Since, given an addition chain for n, the only operation involved in evaluating
x' is multiplication, it is natural to inquire as to what is the effect of improving the
efficiency of the multiplication. A good deal is now known about multiplication
algorithms (see Knuth [7], and Winograd [9]), in particular, the asymptotic behavior
of different multiplication algorithms. In this paper, we propose to examine four
different addition chains for n and see how they compare as we change the
efficiency of our multiplication algorithms.

2. Computational Model. We call An = (1 = a,, a2, ..., ak = n) an addition chain
of length k for n if for all i > 1 there exist il, i2 < i such that ai = ail + ai2. This
chain then is used to compute xn as xn = Xak = Xakl - Xak2 and so on for all
i = k - 1, .. ., 2. In general, the size of the object Xai is a function of ai, so that the
cost of computing Xail - Xai2 depends on ail and ai2, and, of course, the efficiency of
the multiplication algorithm. We introduce this efficiency as a factor a by assigning
a cost of multiplying Xaai by Xai2, called C(xail * xi2), proportional to ail - ai2 to
the power of a. That is:

(2.1) C(xail - Xai2) = (ai1 * aJ2), a > 0.

Received November 26, 1984; revised April 30, 1985.
1980 Mathematics Subject Classification. Primary 68A20.

?1986 American Mathematical Society

0025-5718/86 $1.00 + $.25 per page

603

604 D. P. McCARTHY

The justification for this costing is simply that many multiplication algorithms have
a complexity or efficiency well bounded by 0(n9), where n is a measure of the size
of the multiplicands and /P a positive number. For example, multiplication of n-digit
numbers using the traditional algorithm is 0(n2), binomial expansion yields an
algorithm of O(n o&23), and the fast Fourier transform yields an algorithm of
0(n * log n log log n) which, while not of the form 0(n), is well bounded by 0(n).
In contrast, fixed-precision numbers are multiplied in time of 0(n0), that is, in
constant time. Note that all these complexity measures assume arguments of equal
size n = ai = ai2, so that a = 3/2.

Using this costing, we define a multiplicative cost CA, associated with a particular
addition chain An as follows:

k

(2.2) CAn = E (ail a2), ak = n
i=2

3. The Algorithms. Next we look at some exponentiation algorithms based on
addition chains.

(a) Repeated Multiplication by x.

(3.1) xn= (X ni nfl

which is associated with the addition chain Rn = (1, 2,.. .,a, . . ., n), where ai
for i= ,...,n.

(b) Binary Algorithm or Repeated Squaring. This algorithm is based upon the
binary representation of n:

(3.2) xn= X n/2 . Xn/2 n even

kx - xn-1 n odd& n> 1

which defines a binary addition chain Bn = (1, 2,..., ai, ..., n), where

(1 i=l
ai = ai +1 ai odd).

ai-1 + ai-1 ai even

(c) Factor Chain. This is based upon the fact that either n is prime, or it may be
factored into at least two numbers fi and f2, n = f, - f2, in which case we raise xf2
to the power of fA as follows:

x n=1
(3.3) Xn X I Xn-1 n > l&prime

(Xf2)fl n = fj * f2, 1 < fi, f2 < n

If we have the factor addition chains for fi and f2 as F, = (1,..., a,...,

and F2 = (1,..., a,',... fa) then we may compose a chain for n as Fn =

(1,.*, a', *... f2 ***' a f2, _.., f.
-

f2 = n). We note in passing that there are two
such chains, since (Xf2)fl = (Xfl)f2.

(d) Power Chain. On page 402 of Knuth [7] are displayed the first eight levels of a
power tree and the procedure for extending it. Once created, this tree provides a
nearly optimal short addition chain to compute all the tree node values. Thus, for

IMPROVED MULTIPLICATION EFFICIENCY ON EXPONENTIATION ALGORITHMS 605

each n appearing in the tree, there will be a chain Pn = (1,..., Pi,. Pk= n),
where for all i there is a 1 < i such that pi = pi-l + pj, i = 2, ...,k, so that

(3.4) x x i =
1=)

We are now in a position to evaluate cost functions for these four exponentiation
algorithms based on Eqs. (2.1), (3.1), (3.2), (3.3) and (3.4). We define CRn, CBn, CF,2
and CPn, as the cost of the repeated, binary, factor and power algorithms, respec-
tively:

From (2.2) & (3.1)
n-i

CRn = (n - 1)a + CR_l = a
i=1

From (2.2) & (3.2)

0 n=l

CBn = (n/2)2a + CBn/2 n even

(n-l)a + CBn-l n odd

From (2.2) & (3.3)

0 n= 1

CF; -= 1) + CFnj n prime)
n~~~~~~~ f2a *Ci+ f n = fit - f2

From (2.2) & (3.4)

/ 0 n = 1

CPn=l (P) a + CP n= >

4. Comparison Between the Algorithms. The cost functions CRn, CBn, CFn and

CPn may be most readily compared by plotting their values on a common set of
ordinates. As was noted in the presentation of the computational model, certain
values of a are associated with particular multiplication techniques; we may usefully
tabulate some of these:

a MULTIPLICAND ALGORITHM

0 Fixed-precision integers Traditional
.5 Infinite-precision integers Bound on FFT

log 3/2 Infinite-precision integers Binomial expansion
1 Infinite-precision integers Traditional
2 Dense univariate polynomials with Traditional

infinite-precision coefficients.
v = 1,2,3 Dense multivariate polynomials in v Traditional

variables.

In Figure 1 below we show these four cost functions plotted against n for values of
a = 0, .5, 1, 1.5 and from them we draw the following inferences.

1. In practical terms, there is no difference between algorithms based on the
binary, factor and power tree algorithms. This being so, we may take the binary
algorithm, which is the easiest to compute, as representative of all short chains.

606 D. P. McCARTHY

_
+ ? } a

~~~~~~~~~~~~~~~~~~~~~=1. 5 

o~~~~~~~~~~~~~~ +++- 

C) 

CM 

? o > i}~~~~~~~~~~~~~~~0 a=1.0 

M +A+ +A A 

oc) o e 

~0.00 20.00 40.00 60.00 80.00 100.00 120.00 
n 

FIGURE~ 1 
The log10 of CR = -,CR = <a, CF = +, CP = A plotted against n for various oh. 

2. For values of a less than 1 and with n increasing, repeated multiplication is an 
unacceptably costly method of exponentiation. 

3. For a = 1, repeated multiplication, though a little costlier, compares well with 
the other algorithms, particularly bearing in mind that it produces all powers of x 
intermediate between 1 and n. 

4. For a = 1.5, and with n increasing, repeated multiplication provides an 
emphatically cheaper method of evaluating xn. 

5. If we can improve our multiplication algorithm so, for example, a decreases 
from 1 to .5, then looking at n = 100 we find for a = 1 that CR1oo= 5000 and 
CB1oo= 3200, while for a = .5, CR1oo= 640 and CB1oo= 100, so that order of 
magnitude improvements are possible. 

We now strengthen these ideas with the following theoretical results. 

5. Theoretical Results. (a) a = 0. In this case, it is clear that the shortest chain for 
n will yield the cheapest evaluation of xn. Unfortunately, no simple algorithm to 
find even the length of this chain has emerged (see Knuth [7, pp. 402-418]). 
However, since the length of the binary chain at worst is less than twice the length of 
the shortest chain, and is generally about the same length, it represents a satisfac- 
torily efficient algorithm for this situation. 



IMPROVED MULTIPLICATION EFFICIENCY ON EXPONENTIATION ALGORITHMS 607 

(b) a = 1. In Graham and Yao [41, it -is shown that in this case, the binary 
algorithm provides absolutely the cheapest addition chain based exponentiation 
algorithm. 

(c) a > 2. No theoretical results have been presented for this case, but, in 
Gentleman [31, analysis is presented relating to the exponentiation of sparse poly- 
nomials which strongly suggests that repeated multiplication is optimal for large 
enough n. The following theorem strengthens this. 

THEOREM. If C(x' xi) = (i * j)a and a > 2, then repeated multiplication provides 
uniquely the cheapest method by which to evaluate x' for all n. 

Proof. We consider first a = 2, where the theorem is demonstrably true for 
n = 1, 2, 3. Next, we assume it is false for n = p + q, where p > q > 1, so that we 
must have 

p+q-1 
( p - q)2 < p2 + (p + 1)2 + ...+ (p + q - 1,2 E i2 

i=p 

or 

(p . q)2 <p2q + q(q - 1)p + q(q - 1)(2q - 1)/6, 

implying 

p2q(q - 1) - q(q - 1)p < q(q --1)(2q - 1)/6. 

But q > 1, so that p2 _p < (2q-1)/6. But p <p2 _p for all p > 2, and 
(2q - 1)/6 < q for all q, so that we derive p < q in contradiction of the assump- 
tion p > q. Thus, the theorem is proven true and for all p > q > 1 we have shown 

p+q-1 
(5.1) (P . q) 2> 1: i 2 

i=p 

We extend this result to include a > 2 by letting a = 2 + A, A > 0, and observing 
that (p* q)A > 1 and iA < (p * q)A for all i = p,..., p + q- 1. Hence, from Eq. 
(5.1) we have 

p+q-1 p+q-1 
(- q )2. (p - q)' > ( p . q)" i2 > i2+ 

i=p i=p 

so 

p+q-1 

(p. q)2+A > E i2+^ for all A > 0. 
i-p 

(d) 1 < a < 2. We examine this interval in order to observe the manner in which 
the advantage shifts from the binary algorithm (short chain type) to repeated 
multiplication as a increases. Let no be the lowest integer such that repeated 
multiplication is cheaper or as good as the binary algorithm. That is, 

CBno< CR nol - and CB,>CR, foralln>n0. 



608 D. P. McCARTHY 

This function is best evaluated numerically and is shown below for selected values of 
a. 

a 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.45 1.50 1.55 > 1.55 
n 0 1024 206 48 22 14 10 8 6 6 1 1 

It is clear from this that once a > 1.0, repeated multiplication should be used. 

6. Conclusion. This paper has compared algorithms to compute Xn derived from 
addition chains for n and, from the results here presented, we conclude: 

1. Despite the fact there are many addition chains for most n, if we wish to 
minimize the multiplicative cost of evaluating x", we need consider only two, 
repeated multiplication and the binary algorithm. 

2. When we characterize the cost of multiplying x' by xi as (i - j)' then, in 
practical terms, if a < 1, we should use the binary algorithm and if a > 1, we 
should use repeated multiplication. If a = 1, then although repeated squaring is 
about twice as fast as repeated multiplication, the fact that the latter yields all the 
intermediate powers of x makes it the more attractive. 

Department of Computer Science 
Engineering School 
Trinity College 
Dublin 2, Ireland 

1. R. J. FATEMAN, "On the computation of powers of sparse polynomials," Stud. Apple. Math., v. 53, 
1974, pp. 145-155. 

2. R. J. FATEMAN, "Polynomial multiplication, powers and asymptotic analysis: Some comments," 
SIAM J. Comput., v. 3, No. 3, 1974, pp. 196-213. 

3. W. M. GENTLEMAN, "Optimal multiplication chains for computing a power of a symbolic poly- 
nomial," Math. Comp., v. 26,1972, pp. 945-949. 

4. R. L. GRAHAM, A. C.- C. YAO & F.- F. YAO, "Addition chains with multiplicative cost," Discrete 
Math., v. 23, no. 2, 1978, pp. 115-119. 

5. L. HEINDEL, "Computation of powers of multivariate polynomials over the integers," J. Comput. 
System Sci., v. 6, 1972, pp. 1-8. 

6. E. HOROWITZ & S. SAHNI, "The computation of powers of symbolic polynomials," SIAM J. 
Comput., v. 4, 1975, pp. 201-208. 

7. D. KNUTH, The Art of Computer Programming-Vol. II, Seminumerical Algorithms, Addison-Wesley, 
Reading, Mass., 1968. 

8. D. P. McCARTHY, "The optimal algorithm to evaluate x' using elementary multiplication methods," 
Math. Comp., v. 31, 1977, pp. 251-256. 

9. S. WINOGRAD, Arithmetic Complexity of Computations, CBMS-NSF Regional Conf. Series in Appl. 
Math., Vol. 33, SIAM, Philadelphia, PA, 1980. 


